中原大學 107 學年度 □上學期 考試命題紙 ■第二次會考

科目名稱: 微積分 (下)(3學分) 考試時間: 5 月 15 日第二節 *(每題 7 分, 滿分 105 分)

- 1. (a) If z = f(x, y), define $f_y(x, y)$ in terms of limit.
 - (b) Use (a) to find $f_y(x,y)$ if $f(x,y) = x^2 e^y$.
- 2. If $f(x,y) = \cos\left(\frac{y}{1+x}\right)$, calculate f_{xx}, f_{xy} and f_{yy} .
- 3. Let z = f(x, y) and $u = \langle a, b \rangle$ be a unit vector.
 - (a) Define $D_u f(x, y)$, the directional derivative of f in the direction of u.
 - (b) Define $\nabla f(x,y)$, the gradient of f.
 - (c) Express $D_u f(x, y)$ in terms of $\nabla f(x, y)$.
- 4. If $f(x, y, z) = x \sin yz$, find
 - (a) the gradient of f.
 - (b) the directional derivative of f at (3,0,1) in the direction of $\mathbf{v} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$.
- 5. Suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z) = 80/(1 + x^2 + 2y^2 + 3z^2)$, where T is measured in degrees Celsius and x, y, z in meters.
 - (a) In which direction does the temperature increase fastest at the point (1, -1, 2).
 - (b) What is the maximum rate of increase?
- 6. Find the directional derivative of $f(x,y) = x^2 e^{-y}$ at the point (-2,0) in the direction toward the point (2,-3).
- 7. At what points does the normal line through the point (1, 2, 1) on the ellipsoid $4x^2 + y^2 + 4z^2 = 12$ intersect the sphere $x^2 + y^2 + z^2 = 102$?
- 8. If $z = x^2y + 3xy^4$, where $x = \sin(2t)$ and $y = \cos(t)$, find $\frac{dz}{dt}$ when t = 0.
- 9. If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$ and $z = r^2s\sin(t)$, find the value of $\frac{\partial u}{\partial s}$ when r = 2, s = 1, t = 0.
- 10. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.
- 11. If z = f(x, y) where x = s + t and y = s t, show that $\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s} \frac{\partial z}{\partial t}$.

- 12. Find the local maximum and minimum values and saddle points of $f(x,y) = x^4 + y^4 4xy + 1$.
- 13. Find the shortest distance from the point (1,0,-2) to the plane x+2y+z=4.
- 14. Find three positive numbers whose sum is 100 and whose product is a maximum.
- 15. Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64~\rm cm^2$.

107 學年度第二學期理工電資學院微積分 (3學分) 第二次會考答案 2019.5.15

題號	答案	來源
1	x^2e^y	14.3 — 習題 45*
2	$f_{xx} = \frac{-2y}{(1+x)^3}\sin(\frac{y}{1+x}) - \frac{y^2}{(1+x)^4}\cos(\frac{y}{1+x}), f_{yy} = -\frac{1}{(1+x)^2}\cos(\frac{y}{1+x})$	14.3 — 例題 4*
	$f_{xy} = \frac{1}{(1+x)^2} \sin(\frac{y}{1+x}) + \frac{y}{(1+x)^3} \cos(\frac{y}{1+x})$	
3	$(a)\lim_{h\to 0}\frac{f(x+ha,y+hb)-f(x,y)}{h},\ (b)\frac{\partial f}{\partial x}\mathbf{i}+\frac{\partial f}{\partial y}\mathbf{j},\ (c)f_x(x,y)a+f_y(x,y)b$	14.6 – 定義
4	$(a)\sin(yz)\mathbf{i} + xz\cos(yz)\mathbf{j} + xy\cos(yz)\mathbf{k}, (b) - 2$	14.6 — 例題 5*
5	$(a)\frac{5}{8} < -1, 2, -6 >, (b)\frac{5}{8}\sqrt{41}$	14.6 — 例題 7*
6	$-rac{4}{5}$	Review — 習題 45
7	$t = -1, (x, y, z) = (-7, -2, -7); t = \frac{2}{3}, (x, y, z) = (\frac{19}{3}, \frac{14}{3}, \frac{19}{3})$	14.6 — 習題 60
8	6	14.5 – 例題 1
9	192	14.5 — 例題 5
10	$\frac{\partial z}{\partial x} = -\left(\frac{x^2 + 2yz}{z^2 + 2xy}\right), \frac{\partial z}{\partial y} = -\left(\frac{y^2 + 2xz}{z^2 + 2xy}\right)$	14.5 – 例題 9
11	略	14.5 — 習題 46
12	The local min. $f(-1, -1) = -1$, $f(1, 1) = -1$, critical points: $(0, 0), (-1, -1), (1, 1)$	14.7 – 例題 3
13	$\frac{5\sqrt{6}}{6}$	14.7 — 例題 5
14	$(x,y,z) = (\frac{100}{3}, \frac{100}{3}, \frac{100}{3})$	14.7 — 習題 45
15	$(x,y,z) = (\frac{8}{\sqrt{6}}, \frac{8}{\sqrt{6}}, \frac{8}{\sqrt{6}})$	14.7 — 習題 50

^{*} 爲非勾選習題、類似題. 證明題、圖形題略過.