中原大學 111 學年度 □下學期 考試命題紙■第二次會考 科目名稱:微積分(上)(3學分) 考試時間:12月7日第二節

- I. 計算、證明題. (80 分)
- (a) Find the open intervals on which f(x) = (x² 9)^{2/3} is increasing or decreasing.
 (b) Find the relative extrema of f.
- 2. (a) Give a counterexample or prove (給反例或證明) that if f'(c) = 0 or f'(c) dose not exist then (c, f(c)) is a point of inflection.
 (b) Determine the points of inflection of the graph of f(x) = x⁴ 4x³.
- 3. Let $f(x) = -5x^7 + 7x^5$.
 - (a) Use the First Derivative Test to find the relative extrema of f.
 - (b) Use the Second Derivative Test to find the relative extrema of f.
- 4. (a) Find the open intervals on which the graph of $f(x) = \frac{x^2 + 1}{x^2 1}$ is concave upward or concave downward.
 - (b) Determine the point(s) of inflection of f if it (they) exist.
- 5. (a) Find the limit $\lim_{x \to -\infty} \frac{4x-3}{\sqrt{3x^2+2}}$ (b) Find the limit $\lim_{x \to \infty} \left(\sqrt{16x^2-3x}-4x\right)$.

6. (a) Find the limit $\lim_{x \to \infty} \frac{4x - \cos 3x}{4x}$ (b) Find the limit $\lim_{x \to \infty} \sqrt{x} \sin \frac{1}{x}$.

- 7. Find the horizontal, vertical, and slant asymptotes (if they exist) of the function $f(x) = \frac{4x^3}{(x+1)^2}$.
- 8. Sketch the graph of a function that satisfies all of the following conditions: (a) f(0) = 0

$$\begin{array}{l} (\mathbf{b}) \lim_{x \to -3^{-}} f(x) = \infty, \lim_{x \to -3^{+}} f(x) = -\infty, \lim_{x \to 3^{-}} f(x) = -\infty, \lim_{x \to 3^{+}} f(x) = \infty \\ (\mathbf{c}) \lim_{x \to \infty} f(x) = 0, \lim_{x \to -\infty} f(x) = 0 \\ (\mathbf{d}) f'(0) = 0, f'(x) > 0 \text{ for } x < -3 \text{ or } -3 < x < 0 \ ; \ f'(x) < 0 \text{ for } x > 3 \text{ or } 0 < x < 3 \\ (\mathbf{e}) f''(x) > 0 \text{ for } x < -3 \text{ or } x > 3 \ ; \ f''(x) < 0 \text{ for } -3 < x < 3 \end{array}$$

- 9. Let $f(x) = 2x^{\frac{5}{3}} 5x^{\frac{4}{3}}$. Sketch the graph of f by considering the increasing/decreasing intervals, relative extrema, and concavity.
- 10. Let y = x².
 (a) Find the differential dy when x = 1 and dx = 0.01
 (b) Find the change △y when x = 1 and △x = 0.01.

II. 填充題. (25分)

1.
$$\lim_{x \to -\infty} \frac{|4x+2|}{x-2} = -4$$

2. The relative minimum of $f(x) = x + \sqrt{2} \cos x$ in the interval $(0, 2\pi)$ is at $x = \frac{3\pi}{4}$

- 3. The point of inflection of $f(x) = (x-2)(x-1)^2$ occurs at $x = \frac{4}{3}$
- 4. Use differentials to estimate $\sqrt[4]{623} \approx 4.996$
- 5. Let $y = 3x^2 \sec^2 x$. Then the differential $dy = (6x 2\sec^2 x \tan x) dx$

111 學年度第一學期工、電資學院微積分(3學分)第二次會考答案 2022.12.7

題號	答案	來源
1	(a) f is increasing on $(-3, 0)$ and $(3, \infty)$,	
	f is decreasing on $(-\infty, -3)$ and $(0, 3)$	3.3 - 例題 3*
	(b) f has realative maximum $\sqrt[3]{81}$, f has relative minimum 0	
2	(a) 略 (b) The points of inflection are $(0,0), (2,-16)$	3.4 - 例題 3*
3	(a) $f(-1) = -2$ is a relative minimum , $f(1) = 2$ is a relative maximum	3.4 - 例題 4*
	(b) $f(-1) = -2$ is a relative minimum , $f(1) = 2$ is a relative maximum	
4	(a) f is concave upwaed on $(-\infty, -1)$ and $(1, \infty)$,	
	f is concave downward on $(-1, 1)$	3.4 - 習題 13*
	(b) f are no points of inflection	
5	$(a) \frac{-4}{\sqrt{3}}, (b) \frac{-3}{8}$	3.5 - 例題 4, 習題 46*
6	(a) 1, (b) 0	3.5 - 習題 36,41*
7	f has no horizontal asymptotes	
	f has a vertical asymptotes $x = -1$	3.5 - 例題 8*
	f has a slant asymptotes $y = 4x - 8$	
8	略	3.6
9	略	3.6 - 例題 4
10	(a) $dy = f'(x) dx = 0.02$, (b) $\Delta y = f(x + \Delta x) - f(x) = 0.0201$	3.9 - 例題 2*

*為非勾選習題、類似題.

證明題、做圖題過程略過.