中原大學 112 學年度 □上學期 考試命題紙 ■期末考 科目名稱:微積分(上)(B群) 考試時間:1月10日第二節

I. 填充題. (25分)

1. Let $f(x) = 30x^{\frac{2}{3}} - 3x^{\frac{5}{3}}$. Then f has a relative <u>maximum</u> at 4.

- 2. Let $f(x) = x^2 2\sin(x^2), 0 \le x \le \sqrt{2\pi}$. Is f increasing or decreasing on (1.2, 2). Ans=<u>increasing</u>
- 3. Let $f(x) = \frac{x^2 + 1}{4x^2 + 12x + 9}$. Then f has a vertical asymptote $x = \underline{-\frac{3}{2}}$
- 4. Find $\lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{x^2} \right) = -\infty$
- 5. Find $\lim_{x \to \infty} \left(\frac{x-1}{x^2+1} + \frac{5x\sqrt{x+3}}{3\sqrt{x^3+1}} + \frac{x+7}{\sqrt[3]{x^2+2x+7}} \right) = \underline{\infty}$

- II. 計算、證明題. (80 分)
- 1. Determine the intervals where the function $f(x) = x^3 3x + 2$ is increasing or decreasing.
- 2. Find the relative extrema of $f(x) = x\sqrt{4-x}$.
- 3. Let L(x) = ax+b, determine the constants a and b such that $\lim_{x \to \infty} \left(\frac{2x^2+3}{x+1} L(x) \right) = 0.$
- 4. Let $f(x) = \frac{1}{1 \cos x}$, $0 < x < 2\pi$. Find the relative extrema of f.
- 5. Determine the intervals where the graph of $f(x) = x^4 4x^3 + 12$ is concave upward and the intervals where it is concave downward.
- 6. Find all inflection points of the function $g(x) = x^3 6x^2 + 2x + 3$.
- 7. Use the Second Derivative Test to find the relative extrema of $f(x) = 2x^4 8x + 4$ if the relative extrema exist.
- 8. Let $f(x) = \sin^2 x$, $0 < x < \frac{3\pi}{2}$. Find the relative extrema of f.
- 9. Find the limit. (a) $\lim_{x \to 0^+} \cot 2x$ (b) $\lim_{x \to -\infty} \frac{2t^2}{\sqrt{t^4 + t^2}}$.
- 10. Find the horizontal and vertical asymptotes of the function $f(x) = \frac{x}{x+1}$.

112 學年度第一學期理、エ	L、	電資學院微積分(E	3 群) 期末考答案 2024.1.10
----------------	----	-----------	----------------------

題號	答案
1	increasing interval is $(-\infty, -1), (1, \infty)$, decreasing interval is $(-1, 1)$
2	f has relative maximum at $x = \frac{8}{3}$
3	a = 2, b = -2
4	f has relative minimum at $x = \pi, f(\pi) = \frac{1}{2}$
5	concave upward: $(-\infty, 0), (2, \infty)$, concave downward: $(0, 2)$
6	g has an inflection point $(2, -9)$
7	relative minimum at $x = 1$, with value $f(1) = -2$
8	relative maximum at $x = \frac{\pi}{2}$, with value $f(\frac{\pi}{2}) = 1$,
	relative minimum at $x = \pi$, with value $f(\pi) = 0$.
9	$(a) \infty$ $(b) 2$
10	y = 1 is a horizontal asymptote and $x = -1$ is a vertical asymptote.

*為非勾選習題、勾選習題類似題.
證明題過程略過.