姓名 |
邱國良
|
系級 |
數學系 55級 |
|
學歷 |
Ph. D. (Applied Mathematics), Harvard University, Cambridge, Mass, 1973-1976
University of Tennessee, Knoxville, Tennessee, 1971-1973
Kansas State University, Manhattan, Kansas, 1970-1971
M.A. (Mathematics), Samford University, Birmingham, Alabama, 1969-1970
B.S. (Mathematics), Chung Yuan Christian College, Chung-Li, Taiwan, 1962-1966 |
|
經歷 |
The Aerospace Corporation, INC., El Segundo, CA, (2007-2016)
Applied Signal Technology, INC., Torrance, CA, (2005-2007)
Raytheon Learn Institute, El Segundo, CA,(2000-2005)
Taught Two 15-week courses:
1. "Astrodynamic, Inertial navigation and Applied optimal estimation"
2. "GPS/Inertial navigation and Kalman filter"
Raytheon Company, El Segundo, CA, (1998-2005)
Interstate Electronic Corp., Anaheim, CA , (1997-1998)
Litton Guidance & Control Systems Division, Woodland Hills, CA, (1984-1997)
Vought Corp. Grand Prairie, TX, (1980-1984)
Michigan-Wisconsin Pipeline Company, Detroit, MI, (1979-1980)
Assistant Professor (Mathematics), Wayne State University, Detroit, MI, (1976-1980)
|
|
傑出事蹟 |
US Patent
- U. S. Patent Number 8510079B2 (with Scott Osborn), Systems and Methods for an Advanced Pedometer, Aerospace Corporation, Nov 3, 2011
Publication
- A second order nonlinear oscillation theorem, SIAM Appl. Math. Vol. 21, (1971), 221-224
- A nonoscillation theorem for the superlinear case of second order differential equations y”+yF(y^2,x) =0, SIAM J. Appl. Math., Vol. 23 (1972), 456-459
- The existence of oscillatory solutions for the equation, y”+q(t)y^r = 0, 0<r<1, Proc. Amer. Math. Soc., Vol. 35 (1972), 120-122
- On the asymptotic behavior of solutions of the equation y”+p(x)y=0, Ann. Polonici Math. XXX, (1974), 63-69
- Oscillation and nonoscillation theorems for second order functional differential equation, J. Math. Anal. Appl. Vol. 45 (1974), 384-403
- The geometry of indefinite J-space and strong stability criteria of canonical differential equations with periodic coefficients, SIAM J. Math. Anal., Vol. 8 (1977), 118-126
- (With P.L. Chow) Asymptotic stability of randomly perturbed linear periodic systems, SIAM J. Appl. Math., Vol. 40, (1981), 315-326
- On the asymptotic behavior of perturbed linear system, Ann. Poloinici Math. XLI (1982), 36-42
- Stability behavior of linear time-varying systems, Journal of Guidance, Control, and Dynamics, Vol. 17, no. 4 (1994), 857-859
|